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Open Source LLMs:
What we've learned SO far




Who has used LLMs?

Who has used open-source LLMs?

Who has fine-tuned or augmented an open-source LLM
with unseen data?
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Why using open-source LLMs in the first place?

2 Ly 2

DATA PRIVACY CUSTOMIZATION LATENCY COST-EFFECTIVENESS



Multilingual chatbot for confidential data
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How to choose a suiting open-source LLM?

LMSYS Chatbot Arena Assess human sentiment Human
towards model responses

Chiang et al. (2024)

2) MixEval Real-world user queries, LLM
achieving 0.96 ranking
Ni, Jinjie, et al. (2024) correlation with chatbot arena
3) IFEVAL Assess ability to follow LLM

detailed instructions
Zhou, Jeffrey, et al. (2023)

4)  Arena-Hard Assess multi-turn LLM
conversation and instruction-
Li, Tianle, et al. (2024) following tasks
(0.89 correlation with human
preferences)

= Evaluation on downstream task


https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2406.11939
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Two main strategies for task adoption of pre-trained LLMs

o/

Supervised Fine-tuning (SFT)

In-context learning (ICL)

+ No chat conversation data needed + Allows to align LLMs tone with company-specific style
+ Might alleviate hallucination — Chat conversation data needed, that is expensive to get
— Slower inference due to longer context — More expertise required (although very standardized in

Optimizing the retrieval part can be challenging the meantime)
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Retrieval Augmented Generation (RAG) Architecture
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Llama-cpp vs. Ollama

LLaMAG:

+ If you need the features from latest releases

— Requires dealing with prompt formats and special
tokens

— Development setup for multiple developers can be
tricky

.@.

+ Super easy to setup
+ Does prompt formatting for you by hiding its

definition in the Modelfile

Great API that streamlines development with
deployed models in parallel

+ Newly released models are available very quickly
+ Builds on llama.cpp

Side note: Activate flash attention to get ~1.5x throughput (if your GPU supports it)
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Evaluation
Metrics
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How well does the generated answer align Does the model respond in the correct How well does the retrieval work?

. o ?
with the ground truth answer? language? _ Generative query reformulation (GQR)

has very little impact on retrieval
performance

— Automatic evaluation using LLM-as-a-judge — Bigger models (70B+) almost always
paradigm match the language, while smaller

_ ' . %) miss i
— Smaller models can keep up in quality, models occasionally (8%) miss it

while offering much better latency
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Evaluation
Coping with LLM-as-a-judge intra-model bias

— LLM judges have been shown to have a positive bias
towards their own answers

— Panel of LLM evaluators (PoLL): Use multiple smaller
models as individual judges instead of single large

model

. . Generated answer
+ Reduces intra-model bias . WW‘; it ooer
+ ~4times less expensive (with 5 models)

+

Evaluate fully on premise

May increase evaluation duration
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Source: Verga, Pat, et al. (2024)



https://arxiv.org/abs/2404.18796
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